On the Convergence of Circle Packings to the Riemann Map

نویسنده

  • Zheng-Xu He
چکیده

Rodin and Sullivan (1987) proved Thurston’s conjecture that a scheme based on the Circle Packing Theorem converges to the Riemann mapping, thereby providing a refreshing geometric view of Riemann’s Mapping Theorem. We now present a new proof of the Rodin–Sullivan theorem. This proof is based on the argument principle, and has the following virtues. 1. It applies to more general packings. The Rodin–Sullivan paper deals with packings based on the hexagonal combinatorics. Later, quantitative estimates were found, which also worked for bounded valence packings. Here, the bounded valence assumption is unnecessary and irrelevant. 2. Our method is rather elementary, and accessible to non-experts. In particular, quasiconformal maps are not needed. Consequently, this gives an independent proof of Riemann’s Conformal Mapping Theorem. (The Rodin–Sullivan proof uses results that rely on Riemann’s Mapping Theorem.) 3. Our approach gives the convergence of the rst and second derivatives, without signi cant additional di culties. While previous work has established the convergence of the rst two derivatives for bounded valence packings, now the bounded valence assumption is unnecessary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Conformally symmetric circle packings . A generalization of Doyle spirals

Circle packings (and more generally patterns) as discrete analogs of conformal mappings is a fast developing field of research on the border of analysis and geometry. Recent progress was initiated by Thurston’s idea [T] about the approximation of the Riemann mapping by circle packings. The corresponding convergence was proven by Rodin and Sullivan [RS]; many additional connections with analytic...

متن کامل

The C1 Convergence of Hexagonal Disk Packings to the Riemann Map

TO THE RIEMANN MAP Zheng-Xu He and Oded Schramm Abstract. Let $ C be a simply connected domain. The Rodin-SullivanTheorem states that a sequence of disk packings in the unit disk U converges, in a well de ned sense, to a conformal map from to U . Moreover, it is known that the rst and second derivatives converge as well. Here, it is proven that for hexagonal disk packings the convergence is C1 ...

متن کامل

Solving Beltrami Equations by Circle Packing

We use Andreev-Thurston's theorem on the existence of circle packings to construct approximating solutions to the Beltrami equations on Riemann surfaces. The convergence of the approximating solutions on compact subsets will be shown. This gives a constructive proof of the existence theorem for Beltrami equations.

متن کامل

Discrete Z and Painlevé equations

Circle patterns as discrete analogs of conformal mappings is a fast-developing field of research on the border of analysis and geometry. Recent progress in their investigation was initiated by Thurston’s idea (see [18]) about approximating the Riemann mapping by circle packings. The corresponding convergence was proven by Rodin and Sullivan in [15]. For hexagonal packings, it was established by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996